الحاق عملگرهای ترکیبی روی فضای هیلبرت تابع های تحلیلی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه یاسوج - دانشکده علوم پایه
- نویسنده اسماء مظلوم زاده
- استاد راهنما حمید رضایی اسکندر نراقی راد
- سال انتشار 1391
چکیده
در این پایان نامه الحاق عملگرهای ترکیبی را بر فضای هیلبرت از توابع تحلیلی بر دیسک باز محاسبه می کنیم. به ویژه برای فضای هاردی، فضای دیریکله و فضای برگمن یک فرمول کلی به دست می آوریم. در تمامی موارد، الحاق عملگر ترکیبی به صورت اثر آن بر هسته ی تکثیری فضای مربوطه مشخص می شود.
منابع مشابه
دوگان های عملگرهای ترکیبی روی فضاهای هیلبرت از توابع تحلیلی
در این پایان نامه ، ما مشاهده می کنیم که یک فرمول برای دوگانِ یک عملگر ترکیبی که فقط برای نشان های خاص در بعضی از فضاهای هیلبرت از توابع تحلیلی شناخته شده است، در واقع برای هر نشان مجاز در هر فضای هیلبرت از توابع تحلیلی ، با هسته های مولد ، صدق می کند .پس از معرفی فرمول عمومی و به دست آوردنِ چند نتیجه جدید ، همه فرمول های شناخته شده قبلی برای دوگان به عنوانِ نتیجه ای ساده حاصل می شوند ، حتی بعضی د...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه یاسوج - دانشکده علوم پایه
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023